**TralL-Det: Transformation-Invariant Local Feature Networks BMVC** for 3D LiDAR Object Detection with Unsupervised Pre-Training 2024 Li Li, Tanqiu Qiao, Hubert P. H. Shum, and Toby P. Breckon Durham **BMVC 2024** Durham University University **3** TralL Features Augmentation TralL MAE Proposal D & S view 1  $L_{\rm IPD}$  $x_n, x_c$  $x_n, x_c$ transpose  $\boldsymbol{P}^{\star}$  $(N, K, C+k^2)$ (N, K, C) TralL sort

Motivations & Contributions

### **TralL-Det Architecture**

# **TralL Features**

To Enhance local geometry representation and detection accuracy, our TralL features and TralL-Det architecture significantly improve 3D LiDAR object detection pretraining in autonomous driving.



- A transformation-invariant local feature (TraIL) for 3D object detection, ensuring robustness to rigid transformations.
- An embedding method using Multi-head Self-Attention Encoder (MAE) for capturing geometric relations between points.
- A novel pre-training architecture (TralL-Det) for 3D object detection that surpasses recent approaches.

#### Results & Conclusion

We use the standard SSL framework - pretrain a backbone network on large unlabeled data, then fine-tune it on downstream tasks with limited labeled data. TralL is defined for a point cloud patch X with K points where K > k and k is the count of the nearest neighbours of a point, forming an K × k matrix TralL(X; k). Each row i of this matrix includes the ordered distances from the *i*-th point in X to its k nearest neighbours.

Methodology

## **Multi-attention Geometric Encoding**



We propose the multi-attention geometric encoding. It computes asymmetric geometric features from the proposal  $P^*$  using center and neighbor points via subtraction. These features are refined with a proposal-aware encoding module using multi-head self-attention.

#### **Table:** Data-efficient 3D Object Detection on KITTI.

| Fine-tuning with        | Detector  | Pre-train.     | mAP    | Car   |       |       | Pedestrian |       |       | Cyclist |       |       |
|-------------------------|-----------|----------------|--------|-------|-------|-------|------------|-------|-------|---------|-------|-------|
| various label ratios    |           | Schedule       | (Mod.) | Easy  | Mod.  | Hard  | Easy       | Mod.  | Hard  | Easy    | Mod.  | Hard  |
| 20%<br>(~ 0.7k frames)  | PointRCNN | Scratch        | 63.51  | 88.64 | 75.23 | 72.47 | 55.49      | 48.90 | 42.23 | 85.41   | 66.39 | 61.74 |
|                         |           | Prop.Con. [52] | 66.20  | 88.52 | 77.02 | 72.56 | 58.66      | 51.90 | 44.98 | 90.27   | 69.67 | 65.05 |
|                         |           | ★ Ours         | 67.80  | 89.07 | 78.86 | 73.63 | 59.12      | 53.37 | 46.11 | 92.95   | 71.16 | 66.12 |
|                         | PV-RCNN   | Scratch        | 66.71  | 91.81 | 82.52 | 80.11 | 58.78      | 53.33 | 47.61 | 86.74   | 64.28 | 59.53 |
|                         |           | Prop.Con. [52] | 68.13  | 91.96 | 82.65 | 80.15 | 62.58      | 55.05 | 50.06 | 88.58   | 66.68 | 62.32 |
|                         |           | ★ Ours         | 69.30  | 91.88 | 82.73 | 80.39 | 62.22      | 56.94 | 49.85 | 88.43   | 68.24 | 61.19 |
| 50%<br>(~ 1.8k frames)  | PointRCNN | Scratch        | 66.73  | 89.12 | 77.85 | 75.36 | 61.82      | 54.58 | 47.90 | 86.30   | 67.76 | 63.26 |
|                         |           | Prop.Con. [52] | 69.23  | 89.32 | 79.97 | 77.39 | 62.19      | 54.47 | 46.49 | 92.26   | 73.25 | 68.51 |
|                         |           | ★ Ours         | 69.77  | 90.47 | 81.23 | 76.82 | 64.15      | 54.79 | 47.28 | 91.16   | 73.29 | 71.13 |
|                         | PV-RCNN   | Scratch        | 69.63  | 91.77 | 82.68 | 81.90 | 63.70      | 57.10 | 52.77 | 89.77   | 69.12 | 64.61 |
|                         |           | Prop.Con. [52] | 71.76  | 92.29 | 82.92 | 82.09 | 65.82      | 59.92 | 55.06 | 91.87   | 72.45 | 67.53 |
|                         |           | ★ Ours         | 73.24  | 90.15 | 84.20 | 85.01 | 64.28      | 61.43 | 56.09 | 92.42   | 74.10 | 66.23 |
| 100%<br>(~ 3.7k frames) | PointRCNN | Scratch        | 69.45  | 90.02 | 80.56 | 78.02 | 62.59      | 55.66 | 48.69 | 89.87   | 72.12 | 67.52 |
|                         |           | DepthCon. [55] | 70.26  | 89.38 | 80.32 | 77.92 | 65.55      | 57.62 | 50.98 | 90.52   | 72.84 | 68.22 |
|                         |           | Prop.Con. [52] | 70.71  | 89.51 | 80.23 | 77.96 | 66.15      | 58.82 | 52.00 | 91.28   | 73.08 | 68.45 |
|                         |           | ★ Ours         | 71.41  | 90.82 | 81.95 | 77.85 | 66.28      | 58.73 | 53.96 | 92.41   | 73.55 | 71.53 |
|                         | PV-RCNN   | Scratch        | 70.57  | -     | 84.50 | -     | -          | 57.06 | -     | -       | 70.14 | -     |
|                         |           | GCC-3D [24]    | 71.26  | -     | -     | -     | -          | -     | -     | -       | -     | -     |
|                         |           | STRL [14]      | 71.46  | -     | 84.70 | -     | -          | 57.80 | -     | -       | 71.88 | -     |
|                         |           | PointCon. [46] | 71.55  | 91.40 | 84.18 | 82.25 | 65.73      | 57.74 | 52.46 | 91.47   | 72.72 | 67.95 |
|                         |           | Prop.Con. [52] | 72.92  | 92.45 | 84.72 | 82.47 | 68.43      | 60.36 | 55.01 | 92.77   | 73.69 | 69.51 |
|                         |           | ★ Ours         | 73.89  | 92.10 | 85.39 | 84.12 | 68.01      | 61.25 | 54.29 | 93.46   | 75.04 | 72.49 |

$$\mathbf{Q} = \boldsymbol{\delta} \left( \boldsymbol{x}_{c} \right), \quad \mathbf{K} = \boldsymbol{\theta} \left( \boldsymbol{x}_{n} - \boldsymbol{x}_{c} \right), \quad \mathbf{V} = \boldsymbol{\gamma} \left( \boldsymbol{x}_{n} - \boldsymbol{x}_{c} \right),$$
$$S^{(\text{att})} \left( \mathbf{Q}, \mathbf{K}, \mathbf{V} \right) = \text{softmax} \left( \frac{\mathbf{Q}_{h} \mathbf{K}_{h}^{\top}}{\sqrt{D'}} \right) \cdot \mathbf{V}.$$

#### Links & Connections

GitHub





**More Publications**