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TraIL-Det Architecture
Ø To Enhance local geometry representation and detection 

accuracy, our TraIL features and TraIL-Det architecture 
significantly improve 3D LiDAR object detection pre-
training in autonomous driving.

Motivations & Contributions

Ø A transformation-invariant local feature (TraIL) for 3D 
object detection, ensuring robustness to rigid 
transformations.

Ø An embedding method using Multi-head Self-Attention 
Encoder (MAE) for capturing geometric relations 
between points.

Ø A novel pre-training architecture (TraIL-Det) for 3D 
object detection that surpasses recent approaches.
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TraIL Features
Ø TraIL is defined for a point cloud patch X with K 

points where K > k and k is the count of the nearest 
neighbours of a point, forming an K × k matrix 
TraIL(X; k). Each row i of this matrix includes the 
ordered distances from the i-th point in X to its k 
nearest neighbours.
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Table 1: Data-efficient 3D Object Detection on KITTI. We pre-train the backbones of
PointRCNN [32] and PV-RCNN [33] on Waymo and transfer to KITTI 3D object detection
with different label configurations. Consistent improvements are obtained under each set-
ting. Our approach outperforms all the concurrent self-supervised learning methods, i.e.,
DepthContrast [55], PointContrast [46], ProposalContrast [52], GCC-3D [24], and STRL [14].

Fine-tuning with Pre-train. mAP Car Pedestrian Cyclist
various label ratios

Detector
Schedule (Mod.) Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
Scratch 63.51 88.64 75.23 72.47 55.49 48.90 42.23 85.41 66.39 61.74

Prop.Con. [52] 66.20 88.52 77.02 72.56 58.66 51.90 44.98 90.27 69.67 65.05
20%

(→ 0.7k frames)

PointRCNN
✁ Ours 67.80 89.07 78.86 73.63 59.12 53.37 46.11 92.95 71.16 66.12
Scratch 66.71 91.81 82.52 80.11 58.78 53.33 47.61 86.74 64.28 59.53

Prop.Con. [52] 68.13 91.96 82.65 80.15 62.58 55.05 50.06 88.58 66.68 62.32PV-RCNN
✁ Ours 69.30 91.88 82.73 80.39 62.22 56.94 49.85 88.43 68.24 61.19
Scratch 66.73 89.12 77.85 75.36 61.82 54.58 47.90 86.30 67.76 63.26

50%
(→ 1.8k frames)

Prop.Con. [52] 69.23 89.32 79.97 77.39 62.19 54.47 46.49 92.26 73.25 68.51PointRCNN
✁ Ours 69.77 90.47 81.23 76.82 64.15 54.79 47.28 91.16 73.29 71.13
Scratch 69.63 91.77 82.68 81.90 63.70 57.10 52.77 89.77 69.12 64.61

Prop.Con. [52] 71.76 92.29 82.92 82.09 65.82 59.92 55.06 91.87 72.45 67.53PV-RCNN
✁ Ours 73.24 90.15 84.20 85.01 64.28 61.43 56.09 92.42 74.10 66.23
Scratch 69.45 90.02 80.56 78.02 62.59 55.66 48.69 89.87 72.12 67.52

DepthCon. [55] 70.26 89.38 80.32 77.92 65.55 57.62 50.98 90.52 72.84 68.22

100%
(→ 3.7k frames)

Prop.Con. [52] 70.71 89.51 80.23 77.96 66.15 58.82 52.00 91.28 73.08 68.45
PointRCNN

✁ Ours 71.41 90.82 81.95 77.85 66.28 58.73 53.96 92.41 73.55 71.53
Scratch 70.57 - 84.50 - - 57.06 - - 70.14 -

GCC-3D [24] 71.26 - - - - - - - - -
STRL [14] 71.46 - 84.70 - - 57.80 - - 71.88 -

PointCon. [46] 71.55 91.40 84.18 82.25 65.73 57.74 52.46 91.47 72.72 67.95
Prop.Con. [52] 72.92 92.45 84.72 82.47 68.43 60.36 55.01 92.77 73.69 69.51

PV-RCNN

✁ Ours 73.89 92.10 85.39 84.12 68.01 61.25 54.29 93.46 75.04 72.49

Figure 3: The qualitative results of 3D object detection with our TraIL-Det on the KITTI
dataset. The predicted 3D bounding boxes are marked within the point cloud frame, while
the corresponding 2D bounding boxes are highlighted in the RGB images. In the point cloud
visualization, white points represent those within the camera field of view (FOV), whereas
purple points indicate those outside the camera FOV. Best viewed in color.

Table: Data-efficient 3D Object Detection on KITTI.

We use the standard SSL framework - pretrain a backbone 
network on large unlabeled data, then fine-tune it on 
downstream tasks with limited labeled data.

We propose the multi-attention geometric encoding. It 
computes asymmetric geometric features from the 
proposal  P*  using center and neighbor points via 
subtraction. These features are refined with a proposal-
aware encoding module using multi-head self-attention.

Multi-attention Geometric Encoding
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Figure 2: Multi-attention geo-
metric encoding. The asymmetric
geometric features are computed
from the proposal P

→, specifically
the center and neighbor points,
through a subtraction operator. The
geometric features are further re-
fined by a proposal-aware encod-
ing module that utilizes a multi-
head self-attention mechanism.

size using bilinear interpolation I(·), making them suitable for input into subsequent neural
networks.

3.2 TraIL Multi-Head Self-Attention Encoding (TraIL MAE)
For the point cloud scene X and corresponding proposals P, we first derive a global scene-wise
representation using a backbone network, e.g., VoxelNet [57] or PointNet++ [31], denoted
as FFF = fBbone (X). Initial representations for the proposals P

→ ↑ RN↓K↓C, are obtained by
applying a bilinear interpolation function I(·) over FFF , formulated as P

→ = I(P,FFF)↔ I(P,UUU),
where ↔ is the concatenate operator, N is the number of proposals per view, K is the
number of points within a proposal, and C is the channel number from the backbone network.

As shown in Fig. 1 ✁, we employ the multi-head attention mechanism to process the
geometric relations among points within each proposal. For each proposal ppp ↑ P

→, with the
size of K ↓C, we designate the center point feature xxxc ↑ R1↓C of the proposal ppp as the query,
recognizing its informativeness. Neighbor features xxxn ↑ RK↓C, derived from ppp, serve as keys,
with their differences to xxxc encoding the asymmetric geometric relations. Mathematically, the
xxxc and xxxn are projected to query Q, key K, and value V embeddings:

Q = ! (xxxc) , K = ∀ (xxxn ↗ xxxc) , V = # (xxxn ↗ xxxc) , (3)

where ! ,∀ , and # represent the linear transformations.
The embeddings Q, K, and V are then processed by multi-head self-attention mechanism.

In a H-head attention situation, Q, K, and V are further divided into Q = [Q1, · · · ,QH ], K =
[K1, · · · ,KH ], and V = [V1, · · · ,VH ]. For each h ranging from 1 to H, Qh,Kh,Vh ↑ RN↓D

↘

with D
↘ = D/H. The output of the multi-head self-attention is computed as follows:

S
(att) (Q,K,V) = softmax

(
Qh K≃

h⇐
D↘

)
·V. (4)

As shown in Fig. 2, a simple Feed-Forward Network (FFN) and residual operator are then
adopted to obtain proposal representations as:

YYY = S
(emb)(xxxc,xxxn) = Z

(
N

(
Z
(

S(att )(Q,K,V)
)))

(5)

where Z(·) denotes add and normalization operator, N (·) denotes a FFN with 2↓ linear
layers and 1↓ ReLU activation. We observe that a stack of 3 identical self-attention encoding
modules (i.e., H = 3) is ideal for our TraIL-Det framework.
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